AE 6042 COMPUTATIONAL FLUID DYNAMICS

Catalog Description: Finite-difference, finite-volume methods for solution of Navier-Stokes and Euler Equations. Classification of equations, stability, grids, boundary conditions, implicit and explicit methods, turbulence modeling. Units = 4-0-4.

Prerequisites:AE 3450 or consent of the SchoolKnowledge of incompressible and compressible fluid dynamicsProficiency in a computer programming language (e.g. C+, FORTRAN, ...)

Primary Text: <u>Computational Fluid Mechanics and Heat Transfer</u>, Third Edition, Pletcher, R.H., Tannehill, J.C., and Anderson, D.A., CRC Press: Taylor and Francis Publishers, 2013.

TOPICS	SECTIONS
Introduction	Chapter 1
Computational Grids	
Generalized transformation and Euler Equations	5.1.7,
	5.6 intro, 5.6.2
Basic requirements, and terminology	10.1
Basic types: algebraic, elliptic, hyperbolic, unstructured	10.2 to 10.7,
	4.3 to 4.3.3
Introductory Discrete Modeling	
Taylor Series Expansions	3.1, 3.2
Governing Equations	
Navier-Stokes eqns in differential and integral forms	5.1 to 5.1.4
Turbulence treatment: Direct Simulation, LES, RANS	5.2
Non-dimensionalization	5.1.8
Thin-Layer Navier-Stokes (TLNS)	8.1, 8.2
Parabolized Navier-Stokes (PNS)	8.3 to 8.3.4
Euler Eqns, Full Potential Equations, Laplace Eqns	5.5 to 5.5.8
Conservation Law Form	3.3.7
Mathematical Classification of Equations	2.1 to 2.5
Model Equations and Domains of Dependence	2.6

COURSE OUTLINE

Discretization in Time and Space	
Finite difference vs finite volume approach	5.7 to 5.7.2
Consistency, Convergence, Stability	3.3 to 3.3.6
Explicit and Implicit formulations of model equations	
Fourier or von Neumann Stability Analysis	3.7 to 3.7.2

TOPICS	SECTIONS (3 RD Edition)
Solution of 1-D, Unsteady Parabolic and Hyperbolic Equations	
1-D Formulations: FTCS (Explicit), 1st Order Upwind, Lax Method	4.1 to 4.1.5
Modified Equation and Artificial Viscosity	
Lax-Wendroff, MacCormack, & Runge-Kutta Schemes	4.1.6 to 4.1.14
Solution of the 2 D. Unstandy Euler Equations	
Lay Wondroff Schome	
Lax-wendron Scheme	01 to 022
Rungo Kutta Schemes	9.1 10 9.2.2
Steger & Warming van Leer MUSCL Differencing	64
Roe's Approximate Riemann Solver	65 to 66
Total Variation Diminishing Schemes (TVD)	4 4 12
Limiters, explicit and implicit formulations	
Implicit upwind schemes: Alternating Direction Implicit (ADI), Lower-Upper (LU), and Approximate Factorization (AF) methods	9.2.3 to 9.2.6
Boundary Condition Treatment	
Inflow/Outflow boundaries: Characteristic boundary conditions, Compatibility relations	6.7
Solid wall and symmetry boundaries: Slip and no-slip	
conditions, Adiabatic and isothermal conditions	
Discrete modeling of viscous terms	
KAINS TURDUIENCE MODEIING	
Algebraic Matheader Drandtlande Drivet Calesci Calif	5.4
and Baldwin-Lomax models	